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Abstract. Fractal solid surfaces are presented as being built up from repeating fractal units 
of size f equal to the surface upper self-similarity cutoff. Taking into account the difference 
between real diffusion pathways of particles of size A and their observable projections we 
distinguish three types of observable diffusion: ( i )  the classical law for A > f ;  (ii) anomalous 
time dependence for A << f and short times; (iii) normal time dependence but anomalous 
behaviour of the observable diffusion coefficient for A << 6 and long times. Crossovers 
occur from (iii) to (i) with increasing A and from (ii) to (iii) with increasing time. 

It was found recently that the roughness of solid surfaces is adequately and conveniently 
described by the notion of fractal dimension. Analysis of surface area measurements 
on the basis of adsorption data shows that a large variety of solid surfaces are 
characterised by a constant slope of the log-log relation between surface area and size 
of adsorbed molecules (Pfeifer and Avnir 1983, Avnir et al 1984, Pfeifer 1984). A 
different experimental approach revealed the fractal properties of fracture surfaces of 
metals (Mandelbrot et a1 1984). These observations demonstrate that many solid 
surfaces are fractal objects within a range of at least two to four orders of magnitude 
of the ‘unit’ sizes. While their lower self-similarity cutoff is appropriate to interatomic 
distances, no precise estimates of the upper cutoffs are available at present, to our 
knowledge. The surface fractal dimension is very often considerably greater than two 
and reaches values close to three in some cases (Avnir el a1 1984). Various experimental 
techniques confirm these conclusions (see Avnir (1986) for a summary). 

The fractal character of the solid surfaces should have a significant effect on surface 
transport processes as processes on smaller length scales would have longer pathways 
than processes on larger length scales. It is important to realise, however, that in the 
length scale of experimental observation of surface transport phenomena the fractal 
surface appears as a smooth two-dimensional surface and the observer measures the 
actual projection of the real process onto his idealised plane of observation. 

Our purpose here is to account for the difference between real pathways and their 
projections on a smooth observation plane. This allows us to distinguish three types 
of observable diffusion and two crossovers between them. 

A specific feature of the fractal surfaces relevant to this letter and also typical for 
other natural fractals is that their self-similarity range is limited from above. This 
allows us to consider a fractal surface as consisting of repeating fractal units of size 
5 which is the upper self-similarity cutoff. In other words, self-similarity is replaced 
by translational invariance for distances greater than 6. We also assume that the solid 
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support of the fractal surface is non-porous so that the diffusants cannot be ‘lost’ into 
its volume. This presentation of the fractal surface makes possible the following types 
of observable diffusion depending on time t and A which refers to diffusant size (or 
to the length of the elementary diffusion process if longer). 

(i) A > 8. In this case the fractal character of the surface is not ‘felt’ by the diffusing 
particle. Real diffusion pathways coincide with observable pathways and a classical, 
(x2) = 4Dt, dependence will be observed for any time. 

(ii) A < 6. 
(a) Anomalous diffusion for short times when (x’) < f 2  (diffusion within one fractal 

surface unit). 
(b) Normal, (x’) - Dt, diffusion for long enough times when (x2) >> t2 (diffusion 

over many fractal units). 
There are two crossovers between these three types of observable diffusion: crossover 

from (iib) to (i) with increasing A, manifested as a transition from anomalous to normal 
behaviour of the observable diffusion coefficient, and crossover from (iia) to (iib) with 
increasing t. The latter crossover is similar to the crossover from anomalous to normal 
diffusion on infinite random clusters above the percolation threshold (Gefen er a1 1983, 
Pandey et al 1984 and references therein). In the framework of this analogy, the 
surface self-similarity cutoff 8 corresponds to the correlation length in percolating 
clusters as these two parameters determine the crossover ranges. 

For a quantitative treatment of the anomalous case (iia) we describe diffusion and 
Brownian motion along a fractal surface by using the familiar equation 

a c l a t  = DV’c (1) 

which follows from the matter balance in linear thermodynamic approach. Equation 
( 1 )  describes diffusion processes in spaces where concentration c, Vc and V2c respec- 
tively, can be suitably defined. This condition poses a certain problem when considering 
fractal surfaces as a surface of fractal dimension between two and three which has an 
infinitely large area and the distance between two points on it can be infinitely great. 
However, real particles diffusing along solid surfaces are of finite size and do not ‘feel’ 
details in surface structure smaller than their own size. Thus, their diffusion trajectories 
form, in fact, a set of smoothed simply connected surfaces of finite metrics enveloping 
the fractal surface. In these surfaces (parametrised by A )  (1) is certainly applicable. 
Correspondingly, c can be defined as the particle density on the enveloping surface 
and the distance between two points of the fractal surface is the geodesic length along 
the enveloping surface. The analogous length in percolating clusters embedded in 
regular lattices is often termed the ‘chemical’ distance (Havlin er a1 1985). 

The surfaces introduced above of diff usion trajectories enveloping the fractal surface 
will be different for different values of‘A. With decreasing A they become more indented 
and the distance 1 measured along them between two fixed points on the fractal surface 
increases. It is important to note in this connection that the ‘chemical’ distance between 
two points in a lattice cluster is constant since it is measured in units of the lattice 
period which actually represents the lower self-similarity cutoff, while in the case 
considered here this cutoff is determined by the diffusant size A. 

For a point source, the solution of (1) along an enveloping surface is the axially 
symmetric Gauss distribution: 

1 exP( -9) l2  
c(1, t )  =- 

2 Tru2 
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where 1 is the axial geodesic coordinate and u2 = ( 1’) - Dt. Equation (2) describes a 
normal diffusion process along a simply connected two-dimensional envelope. 

The observable particle distribution c(r, t )  follows from c(l, t )  through 

c ( r , t )=  p( r l l )c ( I , t )d l  I 
and the observable mean square displacement is 

( r 2 )  = 1 r2c( r, t )  dr. 

(3) 

(4) 

Here p (  r 1 I) shows the distribution of r at fixed 1. Its shape for percolating clusters in 
two dimensions at criticality was found by Havlin et a1 (1985) by numerical simulation 
and curve-fitting. For fractal surfaces p (  r I I)  is not known but, nevertheless, a simple 
argument based on a plausible assumption allows us to determine the effect of the 
surface fractal dimension on (Iz). 

For this purpose we use the conclusion of Havlin er a1 (1985) that p ( r ( Z )  of 
percolating clusters can be expressed in terms of a single scaled variable U = r / l ”  where 
v is a geometrical exponent and assume that p (  r I I )  of the fractal surface units has the 
same property, p ( r l l )  = (A”-’/I”)p(A”-’r/I”). Then 

In (5) we also use the relation between v and the fractal dimension, dfv = cp (Martin 
1985), where cp is a topological exponent equal to 2 for the surfaces considered here. 
Combining (2)-(5) gives the observable diffusion law: 

( r2> - A’“-”’( ~ t ) ”  (6) 

where 1 2 v 2 3 for 2 S df< 3. As expected, ( r ’ )  + 0 when A + 0, and (r’)  - Dt in the 
smoothness limit d f = 2 .  Equation (6) is valid for short times (diffusion within one 
surface unit). 

The observable mean square displacement depends on two parameters-D and A. 
However, the real diffusion coefficient also depends on the diffusant size. If the 
migrating particle obeys the Einstein-Stokes relation, DA = constant, it follows from 
(6) that 

( 7 )  ( r’) - A 2 - 3  ”. 

Consequently, particles of different size diffusing along a fractal surface would separate 
less than on a smooth surface. Qualitatively, this effect is quite clear: smaller particles 
are quicker, but their pathways on a fractal surface are longer. 

For long times (diffusion over many fractal units), ( 5 )  is replaced by r - 1 and (6) 
is transformed to a linear time dependence of (r2). The observable diffusion coefficient 
is related to the real coefficient by 

Dohs = Dreal( 6 /  1’ (8) 

where L ( A )  is the fractal unit size measured along the enveloping surface. From ( 5 )  
and (8) it follows that 

Dohs( A ) - Drea!( A )(A / t)(dr-2) (for A s 6 ) .  ( 9 )  
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Equation (9) shows that a crossover from anomalous to normal dependence of Dohs 
on A occurs with increasing A to values equal to or greater than the surface upper 
self-similarity cutoff. 

Equation (9) probably provides a better possibility for experimental exploration 
than (6) because the anomalous time dependence in ( 6 )  exists only for short times 
which may turn out to be out of experimental reach. Besides processes of surface 
diffusion (for example, diffusion of proteins and low molecular weight compounds 
along biological membrane surfaces), (6) and (9) may also have application to the 
interpretation of experimental results on nucleation of adsorbates, surface chemical 
reactions, etc. 
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